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a b s t r a c t 

Group motion direction, which is composed of instant consistent motions, is an interesting property in 

group dynamics. Understanding the instant group motion direction is a key component of crowd analysis 

and has a wide range of applications, especially for improving group detection in crowd. In this study, in- 

dependent from group detection methods, we propose an instant group motion refining framework based 

on group motion direction. We show that instant group motion direction can be systematically quantified 

by intra-group motion consistency. This is achieved by proposing two instant group motion representa- 

tions in terms of velocity consistency and angle consistency. These group motion representations provide 

a new way to derive the instant group motion direction, which plays an important role in improving the 

performance of state-of-the-art group detection methods. Besides, to improve traditional group detection 

methods, a novel group detection method is proposed as well. Extensive experiments on a variety of pub- 

lic scene video clips demonstrate that both group motion consistency representations are not only useful 

but also necessary for instant group coherent motion filtering. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Group motion analysis has been extensively studied because of

ts wide applications in crowd behavior understanding and group

etection. Although the definition of group varies in different ap-

lications, instant group consistent motions are the primary enti-

ies that compose a time-series group evolution. Suppose a set of

embers with collective behaviors and a common goal are consid-

red as a group [1] , the actual motion direction of group at each

ime is the elementary motion features to understand group be-

aviors [2] in the crowded scene. Thus, instant group consistent
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otion direction is an interesting property of group motion, which

s academically important and practically useful in a wide range of

pplications, including pedestrian counting, group behavior analy-

is and crowd behavior analysis. However, the group detection re-

ults [1,3,4] for group motion analysis are usually collected from

ime-series data, which have to overcome tracking errors to obtain

table groups over time. 

Recent studies in socio-psychological and biological suggest that

ndividuals tend to continuously adjust their locations to facilitate

erbal exchange [5] . People are more easily influenced by others

earby, especially members in their vicinity with a common des-

ination. However, when pedestrians in the crowd form a group,

hey exhibit some interesting properties in dynamics. In crossroad,

edestrians walk across the pavement tend to show higher con-

istency in motion direction. Whilst, in railway station, pedestrians

end to exhibit less consistency in velocity magnitude and motion

rientation. Thus, different intra-group motion properties fit to dif-

erent inter-group motion distinguish requirements. To the best of

ur knowledge, there has not been a study of using intra-group

otion properties to refine group clustering results further. 

Thus, one direct application of the instant intra-group consis-

ent motion direction is to distinguish coherent motion among

roups, so as to refine group detection results. In the computer vi-

ion field, group detection improvement haven’t been fully studied.
ltering by group motion representations, Neurocomputing (2017), 
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Fig. 1. Instant inter-group motion can be better distinguished by instant individual motion direction (displayed by arrow) consistency and velocity (displayed by both arrow 

orientation and length) consistency. Across crowded scenes, the consistency level in instant motion direction and instant motion velocity varies from groups to groups. 

Groups are distinguished with colors. 
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From the perspective of quantitation, groups can be distinguished

by group motion properties, such as instant motion direction and

velocity. As shown in Fig. 1 , after using Kanade Lucas Tomasi (KLT)

tracker in different videos, tracklet clusters of different groups in

the same video are marked with different colors. The velocity mag-

nitude and direction are indicated by the arrow orientation and

length. For explanation convenience, we make an analogy between

a point in image and a member in group in the rest of the paper. 

The above observations motivate us to improve group detec-

tion not only during the tracklet clustering stage, but also after

the tracklet clustering stage. We aim to optimize group detection

by proposing a framework to refine group detection results of any

given detection methods. We refine the initial tracklet clustering

result by studying the instant group motion representation based

on characterizing and quantifying group motion consistency, so

as to avoid group detection failure caused by either tracking er-

rors or limitations of group detection methods. This study is the

first attempt to systematically investigate the instant group mo-

tion representations and apply these representations to improve

group detection performance. Primarily, we make the following

contributions: 

(1) A group motion refining framework. We introduce instant

group motion representations to derive the consistent motion di-

rection as group motion direction for initial groups clustered by

the state-of-the-art group detection methods. Then, the group

motion direction is adopted to improve intra-group consistency.

Extensive experiments show that the proposed framework can

improve group detection performance of various state-of-the-art

time-series group detection methods. 

(2) A spatial distance robust group detection method. We propose

a group detection method by substituting the velocity correlation

with the collectiveness descriptor proposed in [6] . The proposed

method outperforms the state-of-the-art methods [1,7] in exper-

imental evaluation. It also enriches the initial tracklet clustering

varieties for the evaluation of the proposed instant group motion

refining framework. 

(3) Instant group motion representations. We build up two types

of instant group motion representations based on group motion

consistencies. They are independent with the initial trackelet

clusterings and can avoid tracking errors by identifying group

motion consistencies at sub-group level, which are hierarchically

overlapping. Two types of group motion consistencies are derived

from motion velocity and motion angle of group members re-
Please cite this article as: N. Li et al., Instant coherent group motion fi
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pectively. The effectiveness of the proposed instant group motion

epresentations is verified through recognizing intra-group motion

rientation for refining initial group detection results. 

. Related works 

Crowd analysis granularity can be categorized into three levels:

ndividuals [8–10] , groups [1,11,12] and the whole crowd [4,13,14] .

itouni et al. [15] present a systematic survey and evaluation of

rowd modeling techniques. In the computer vision community,

esearchers have focused mainly on autonomous crowd analysis

nd significant progress has been achieved. In the field of de-

ecting groups in images, considering the background of the so-

ial sciences, Setti et al. [16] present an automatic group detec-

ion method for groups specified with rigorous definitions. Choi

t al. [17] investigate the intermediate representations based on

he socio-psychological concept for modeling groups in images.

owever, motion features [18] can be more important than static

isual features in areas related to the analysis of behaviors and ac-

ivities in crowd videos. In [18] , Li et al. category existing crowd

otion features into flow-based features, local spatio-temporal fea-

ures and trajectory/tracklet. Spatio-temporal gradients [19,20] and

istogram functions [21,22] are generally used as basic represen-

ations for motion modeling. Vascon et al. [22] propose a game-

heoretic framework to model the uncertainty associated with the

osition and orientation of the engaged persons in sequences. A

escriptor of collectiveness is proposed in [7] to measure how in-

ividuals act as a union. 

Recent works emerging in crowd behavior analysis begin to fo-

us on finer-level group analysis. Therefore, the crowd level mo-

ion feature cannot be directly utilized for group motion, which

equires finer group segregation. In the following, we briefly

iscuss some works on finer-level group detection and motion

epresentation. 

.1. Group detection 

In the field of finer-level group segregation, state-of-the-art

ethods [1,6,7,13,23] treat a group either as a collection of in-

ividuals or an integrated whole. Zhou et al. [7] segment the

oherent motion by developing two coherent neighbor invariances

s group coherent motion priors, whilst the group collective

ransition prior is learned through Markov chains in [1] . In [1] ,
ltering by group motion representations, Neurocomputing (2017), 
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Fig. 2. Framework for group motion consistency refining. 
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he group collective transition prior is discovered from the initial

roup clustering results of [7] . Group motion pattern modeled

ith the spatio-temporal driving force is proposed to address

he event analysis and activity recognition [24] . Driven by the

ypical group structures generated from social interactions among

roup members, Ge et al. [3] discover small groups hierarchically

ased on velocity and distance of pair-wise individuals. Hausdorff

istance defined with respect to pair-wise proximity and velocity

s used to discover groups [3] . Based on the social force model,

azzon et al. [25] propose a method for detecting and tracking

nteracting groups of people in crowds. 

Most of the above methods segment groups in the crowd by

onsidering intra-group structure, such as velocity and distance

oherency of pair-wise individuals. The proposed method utilizes

he inter-group motion specificities, such as motion consistency of

roups, to refine group detection results. The motivation is that

roup members tend to move coherently along the group motion

irection, which can be characterized by group motion consistency.

.2. Group motion representation 

The motion property is different from groups to groups in the

rowd, which depends on group motion patterns. The concept of

roup motion property is introduced by Shao et al. [1,23] for an-

lyzing and understanding the crowd behavior at the group-level.

oth the intra- and inter-group properties proposed in [1,23] are

alidated for crowd scene identification, which are specifically de-

igned for distinguishing crowd behaviors. 

Different from [1,23] , this paper studies the group motion prop-

rty for group motion filtering. Researchers in fields of social-

sychological [5] and computer vision [13] begin to study indi-

idual motion directions as elemental group dynamics, in terms of

edestrian group properties. As people are more easily influenced

y others in their vicinity, spatial positions of neighboring tracklets

re used for group destination prediction in social affinity feature

earning [13] . Cheng et al. [26] represent motion trajectories from

 probabilistic perspective to handle the variability of movements

ithin the group. Zhao et al. [27] establish an effort on building

he crowd behavior entropy model using the individual velocity.

hey provide a method to adopt Shannon entropy to express the

rowd macro state through calculating the probability of each mi-

rostate. Velocity direction is employed to obtain the particle en-

ropy in [28] . 

Nevertheless, the above-mentioned methods are short of study-

ng the group motion representation for group motion refining. To

efine initial group detection results, we first build up the instant

ntra-group motion consistency to distinguish members who do

ot follow the group motion. As group members exhibit relatively

igh affinity and consistency along instant group motion orienta-

ions, it is of advantage in applying instant group motion to char-

cterize motion consistency over tracking errors. 
Please cite this article as: N. Li et al., Instant coherent group motion fi
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. Group motion refining framework 

Considering a group as a set of members with a common goal,

nstant motion of group members should be of higher consistency

round a certain direction. In this section, we propose a group mo-

ion refining framework based on instant group motion direction.

his refining framework is developed to refine initial groups de-

ected by existing group detection methods. 

As shown in Fig. 2 , the input of the framework is a sequence

f images. Then initial group detection results are generated by

xisting group detection methods or a new method ( Section 3.1 )

roposed by us. To describe the instant group motion, we develop

he instant group motion representation from two types of instant

roup motion consistency ( Section 3.2 ). The instant group motion

epresentation facilitate the selection of the instant group motion

irection for further group motion refining ( Section 3.3 ). The in-

tant group motion direction is determined by electing the angle

indow with relatively higher consistency over other angle win-

ows. Then, the group motion direction is calculated as the av-

rage motion orientation of group members moving in one con-

erned angle window. At last, an instant group motion consistency

ltering method is developed to search for group members with

ighly consistent motion, so as to filter out inconsistent tracklets

nd regain missing tracklets for initial tracklet clustering refine-

ent. Note that, the framework of the group motion refining is

ndependent from specific group detection methods, such as Col-

ective Transition (CT) [1] and Coherent Filtering (CF) [7] . 

.1. Group detection: coherent collectiveness filtering (CCF) 

In general, our group motion refining framework is indepen-

ent from specific group detection methods. The flexibility of this

ramework enables the improvement for a series of group detec-

ion methods. Thus, in addition to existing group detection meth-

ds such as CT [1] and CF [7] , we develop a new method in

lgorithm 1 as a complement. This so-called CCF group detection

ethod is based on CF [7] and the collectiveness descriptor [6] . 

The state-of-the-art group detection methods CT and CF, which

ighlight the group members, tend to coordinate their behaviors

n their neighborhood. Whereas the collectiveness proposed in

6] is designed to cover spatially coherent crowd structure. In

he same crowd system, collectiveness [6] is more robust and

eneral to spatial distance than velocity correlation in the matter

f describing the similarity between group member motions. Thus,

y substituting velocity correlation with collectiveness in CF, we

evelop the group detection method called CCF, as shown in

lgorithm 1 . We first obtain the invariant neighbor set N 

i 
t → t + d by

xamining the K nearest neighbor set of each tracklet z i from time

 to t + d , which is similar to [6] . However, it does not guarantee

hat all the invariant neighbors acting in collective motions are

ollected especially when d is small and K is large. Hence, accord-

ng to the collectiveness descriptor [6] , we set a threshold λ on
ltering by group motion representations, Neurocomputing (2017), 
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Algorithm 1 Coherent collectiveness filtering. 

1: Input: Tracklets included in the current frame t of a video clip, 

Z , R = φ; 

2: Output: Group clusters { G 

◦} M 

j=1 
; 

3: for each tracklet z i ∈ Z 

4: search the K nearest neighbor set as N 

i 
t → t + d . 

5: for each n k 
i 

∈ N t → t + d [7] 

6: compute the averaged collectiveness [6], c 
n k 

i 

t → t + d 

7: put (i, n k 
i 
) in R if c 

n k 
i 

t → t + d > λ, λ is a threshold 

8: build a graph from R , identify coherent motion { G 

◦} M 

j=1 

as the connected components of the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Overlapping angle windows for generating instant group motion coherency 

histograms. The first window (top) covers the entire motion direction of group mo- 

bility. The windows below cover progressively smaller regions of the motion. 
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z  
the average collectiveness to filter inconsistent group members

and obtain the pairwise connection set R. λ is a threshold set on

the value collectiveness, which is set based on the collectiveness

bound in [6] . Finally, a connectivity graph is built, where coherent

tracklet clusters are identified as the connected components of the

graph. It can not only enrich the variety of initial tracklet cluster-

ing for group motion refining framework evaluation in Section 4.3 ,

but also outperform the state-of-the-art methods in [1,7] . 

3.2. Instant group motion representation 

In the crowd, group members are more likely to be influenced

by other group members nearby, especially in the case of a com-

mon destination. Thus, the group motion direction is one imper-

ative group motion property for group motion analysis. In the

spatio-temporal space, group is mainly represented as a set of

tracklets Z = { z} detected by the KLT feature tracker but not lim-

ited by it. There is motion vector [29,30] that inherent correlated

with optical flow [31] , which is beyond the scope of this paper.

Group members tend to exhibit high motion consistency along

group motion orientation. However, the long term group motion

consistency tends to be sensitive to noises of tracking. As group

motion is composed of instant consistent motions toward a spe-

cific destination, the instant group motion consistency direction is

more robust for group motion detection. 

In this section, to identify consistent motion direction of groups,

we first propose two types of general motion consistency at the

group level based on group member motion properties, including

the velocity magnitude and orientation. Afterwards, based on the

group motion consistency at different orientations, we develop his-

tograms of group motion consistency as representations for group

orientation selection. 

3.2.1. Group motion consistency 

Based on the instant velocity of group members, we charac-

terize group motion consistency through describing group mem-

ber motion properties. Similar to [32] , which refers to the entropy

model and proposes the crowd entropy utilizing the foreground

object, we calculate the group motion consistency entropy as 

F = H(Q ) = −
m ∑ 

i =1 

q i log 2 q i , (1)

where H denotes the Shannon entropy of a discrete probability dis-

tribution, and Q = ( q 1 , q 2 , ..., q m 

) is a discrete probability distribu-

tion with 

∑ m 

i =1 q i = 1 . The more inconsistent the group member

distribution is, the bigger the entropy is. The discrete probability

q i is calculated by 

q i = βi / 

m ∑ 

i =1 

βi , (2)
e  

Please cite this article as: N. Li et al., Instant coherent group motion fi
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here the frequency of group members with the specific motion

roperty value is defined as β i , such as the number of group mem-

ers move toward one specific orientation. By designing β i with

ifferent motion properties, i.e., motion orientation and velocity,

e can derive different types of group motion consistency from

q. (1) . 

As pedestrian images in the surveillance videos are usually of

ifferent scales due to perspective distortion, the individual loca-

ion affinity have different scales according to pixel-wise tracking.

evertheless, individual motion orientation is less sensitive to per-

pective distortion. So we generate two types of group motion con-

istency in respect of two group motion properties, including the

elocity angle θ i and the magnitude γ in the polar coordinates. 

Angle consistency: The group motion consistency is highly re-

ated to individual motion orientations in the group. Angle con-

istency can be employed to avoid particular inherent perspective

istortions, when members away from the camera exhibit smaller

elocity magnitude. In the angle consistency, θi (i = 1 , 2 , ..., m ) de-

otes the instant group motion direction, m denotes the number of

roup members out of the total N group members moving at the

rientation windows W j ( j = 1 , 2 , ..., 9) . The set of orientation win-

ows we adopt is shown in Fig. 3 . As to calculate Eq. (2) , β i is set

ith θ i . 

A 
i = θi . (3)

Velocity consistency: The velocity consistency is computed by

ntroducing a polar coordinate system to denote the distribution

f individuals resembling the crowd behavior entropy proposed in

27] . As to calculate Eq. (2) , β i is set based on group member mo-

ion velocity by 

V 
i = N( γi , θi ) , (4)

here γ i and θ i are the polar angle and polar radius in the log-

olar coordinates, they make the motion representation more sen-

itive to positions of nearby individuals than those of individuals

arther away. N is computed as the number of group members

hose velocity falls within the bin matrix, where 8 equally spaced

bins and 5 equally spaced γ bins are used [1] . γ i ∈ [ γ min , γ max ]

nd θi ∈ [ −π, π ] . γ min and γ max are the local minimum and max-

mum value of γ i in one group. 

.2.2. Instant group motion representation 

Pedestrians with different destinations, e.g., when crossing the

ebra-crossing face to face, exhibit relatively different motion ori-

ntations. The instant pedestrian group motion orientation can be
ltering by group motion representations, Neurocomputing (2017), 
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Fig. 4. HAC and HVC of the initial tracklet clustering generated by CT [1] . The more inconsistent the motion is, the bigger the entropy is. According to both HAC and HVC, 

the sub-group related with Win 3 in Fig. 3 exhibits the highest motion consistency among all orientation windows. The bucket values NaN and INF are scores indicating 

there is no members move along specific direction or the consistency is lower enough to ignore. This also applies in Figs. 5 and 6 . 

Fig. 5. HAC and HVC of the initial tracklet clustering of method CF [7] . The more inconsistent the motion is, the bigger the entropy is. According to HAC and HVC, the 

sub-group related with Win 4 and 6 in Fig. 3 separately display the highest motion consistency among all orientation windows. 
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e  
etermined by the actual movement orientation of most pedestri-

ns, who exhibit comparatively high consistency at each time in-

tant. Inter-group motion direction therefore can be distinguished

y intra-group pedestrian motion consistency orientation, given

he initial group tracklet clustering results. However, the excep-

ional motion margin or clustering noises prevent group motion

rientation from correctly being calculated by averaging all indi-

idual motions in the group directly. 

We investigate the group motion consistency at different ranges

f motion orientation and represent the group motion consistency

s histograms. Specifically, we divide group individuals into var-

ous sub-groups (or windows) based on motion orientations and

hen make a quantification for each sub-group motion consistency.

he grouping granularity of group motion orientation is highly re-

ated to group distributions. The set of motion orientation win-

ows we adopt is shown in Fig. 3 . This set of nine overlapping

indows organize individuals into groups whose motion orienta-

ions are correspondingly located at a range of [ −π, π ] , [0, π ],
Please cite this article as: N. Li et al., Instant coherent group motion fi
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 −π, 0] , [ −π, −π/ 2] ∪ [ π/ 2 , π ] , [ −π/ 2 , π/ 2] , [0, π /2], [ π /2, π ],

 −π/ 2 , −π ] , [0 , −π/ 2] . Thus, instead of considering group mem-

ers in all directions as a whole, we adopt a range of overlap-

ing windows to characterize the group motion coherency hierar-

hically, resulting in a histogram of 9 bins. The shadowed areas are

ncluded in that angle windows, while white areas are ignored. The

rst window (top) covers the all-around direction range of group

otion. The windows below cover progressively smaller regions of

he motion. 

Instances of the group motion representation are obtained by

haracterizing motion consistency for sub-groups in the hierarchi-

al range of windows. In this work, as a result of applying the

ngle consistency and velocity consistency in each motion orien-

ation window, two instances of the group motion representation

re noted as the following. 

Histogram of angle consistency (HAC) : HAC is obtained by col-

ecting the angle consistency of sub groups organized by each ori-

ntation window. The proposed representation HAC is employed
ltering by group motion representations, Neurocomputing (2017), 
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Fig. 6. HAC and HVC of the initial tracklet clustering of method CCF proposed in this work. The more inconsistency the motion is, the bigger the entropy is. According to 

HAC and HVC, the sub-group related with Win 4 and 3 in Fig. 3 separately display the highest motion consistency among all orientation windows. 
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to various initial tracklet clustering results generated from various

group detection methods, including CT, CF and CCF. The resulting

histograms are shown correspondingly in Figs. 4 (a), 5 (a) and 6 (a).

NaN and INF indicate there are no members moving along specific

direction or the consistency is low enough to be ignored. 

Histogram of velocity consistency (HVC) : HVC is obtained by col-

lecting the velocity consistency of sub-groups organized by each

orientation window. The resulting histograms of applying the pro-

posed representation HVC to various initial tracklet clustering re-

sults generated from three different group detection methods are

shown in Figs. 4 (b), 5 (b) and 6 (b). In the case that group clus-

ters are generated from noisy tracking results, velocity consistency

tends to be robust for the motion analysis task. Thus, HVC outper-

forms HAC. 

3.2.3. Instant group motion consistency direction 

We distinguish the motion orientation of groups according to

the motion consistency of group members. Note that the total

number of group individuals should be greater than a threshold to

be effective in representing the orientation of the group motion. In

this paper, we set the threshold as N/2, where N is the total num-

ber of group members in a specific group. Thus, the sub-group,

with relatively higher motion consistency among sub-groups of at

least half number of the whole group, is selected for group motion

orientation computation. We illustrate the group motion orienta-

tion of tracklet clusters through group motion representations. As

to the tracklet clustering of CT [1] , Win 3 in Fig. 3 , which displays

the highest velocity consistency and angle consistency, is selected

for group motion orientation computation by both HAC and HVC.

In terms of CF [7] , Win 6 and 4 in Fig. 3 are separately selected by

HAC and HVC. Regarding CCF, Win 6 and 3 in Fig. 3 are separately

selected by HAC and HVC. These results imply that instant group

motion representations perform differently across initial tracklet

clusters. Therefore, different instant group motion representations

tend to pick up different group motion directions, which is ob-

tained by averaging motion orientations of group members in the

selected sub-group. 

3.3. Group motion refining 

Based on instant group motion representations in Section 3.2 ,

an instant group motion consistency filtering method is proposed
Please cite this article as: N. Li et al., Instant coherent group motion fi
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o refine the group detection results. The motion consistency

efining is complemented to the initial tracklet clusters derived

rom the time-series images. The key idea is to search for group

embers with highly consistent motion. The method helps fil-

ering out inconsistent tracklets to obtain stable instant tracklet

lustering. The missing tracklets can be regained by increasing the

pper bound of velocity correlation, and the incorrectly labeled

ndividuals (tracklets) can be eliminated by rising lower bound.

ollowing this strategy, we define velocity correlation boundary as

 

corr 
p / ∈ [ min + α · σ, max + α · σ ] , where min and max are the min-

mum and maximum velocity correlation between group members

nd the computed averaged velocity v dir j 
. For each group, the

efinement will not stop until the Euclidean distance between

oherent motion velocities of two latest iterations is smaller than

 threshold φ. 

To give a clear view, key steps of refining initial tracklet clusters

 G 

◦} M 

j=1 are summarized in Algorithm 2 . 

lgorithm 2 Instant group motion consistency refining. 

1: Input: Initial clusters { G 

◦} M 

j=1 , cluster index j, coherent motion

velocity variation threshold φ ; 

2: Output: Refined tracklet clusters { G j } M 

j=1 
; 

3: for each cluster G 

◦
j 

4: While { v dir j 
isn’t convergent to φ } do 

5: compute instant motion consistency histograms E j , 

6: select group motion consistency direction d = min 

dir 
E dir 

j 
, 

7: compute averaged velocity v dir j 
at direction d for cluster

G 

◦
j 
, 

8: for each node { i } in cluster G 

◦
j 

9: compute the velocity correlation ε corr 
i 

= 

〈 v i , v di r j 
〉 

|| v i ||·|| v di r j 
|| , 

10: compute motion consistency boundary [ min + α · σ max ,

+ α · σ ] where min = min 

i 
ε corr 

i 
, max = max 

i 
ε corr 

i 
, σ is the bias

of all ε corr 
i 

, α is a scaling parameter, 

11: eliminate nodes N = { p} from G 

◦
j 
, if ε corr 

p / ∈ [ min + α · σ,

max + α · σ ] , 

12: collect isolated nodes { q } within the max radius around

the center of G j , namely, ε corr 
q > min + α · σ . 
ltering by group motion representations, Neurocomputing (2017), 
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Fig. 7. Qualitative evaluation over 8 crowd videos in the CUHK crowd dataset, noted as (a)–(h). First column: ground truth of group detection, displayed as tracklet clustering 

with different colors; Second column: group tracklet clustering produced by CT [1] ; Third column: group tracklet clustering produced by CF [7] ; Fourth column: group tracklet 

clustering produced by CCF (proposed). Differences among group detection results of the three group detection methods are marked with white circles. (For interpretation 

of the references to color in this figure, the reader is referred to the web version of this article). 
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. Experimental results 

In this section, we demonstrate the effectiveness of the pro-

osed group motion representations for group motion refinement.

he quantitative result is measured by 7 measure metrics [33–35] ,

ncluding Normalized Mutual Information (NMI), Purity, Adjusted

and (AR), unadjusted Rand Index (RI), Mirkin’s Index (MI), Hu-

ert’s Index (HI) and Accuracy. Smaller HI indicates better clus-

ering performance, the other metrics are vice verse. As far as we

now, only NMI, Purity, RI and Accuracy have been selectively eval-

ated over group detection methods in existing works [1,6,7] . It is

he first time that all these 7 metrics are employed to examine

roup detection performance. 
Please cite this article as: N. Li et al., Instant coherent group motion fi
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.1. Data sets 

We evaluate the proposed group motion refining framework

ith both HVC and HAC on the CUHK Crowd Dataset [1] . The

ataset includes crowd videos with various densities and perspec-

ive scales, collected from various kinds of scenes. The ground

ruth of the CUHK data set is given in the form of one single frame

nnotation of each video. Note that, there are noises brought by

LT tracker. We choose a subset of this dataset to provide quan-

itative evaluation of our instant group motion refining method.

n CUHK data set, there are groups annotated in the single frame

elonging to fragmented tracklets that fail to sustain over the

hole clip [1] . However, the proposed instant group motion re-

ning method, which is designed to refine group members sus-

ain collectiveness in the tracklet fragments cover the given single

rame. Thus, we choose a subset of dataset where group members

ustain collectiveness cross the given frame to provide quantitative
ltering by group motion representations, Neurocomputing (2017), 
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Table 1 

Evaluation of group detection with and without HAC and HVC. NMI, Purity, AR, RI, MI, HI, Accuracy 

are used as quantitative evaluation metrics. The average quantitative performance related to group 

detection methods CT [1] , CF [7] and CCF are presented. For each method, we present at the first 

column the metric values on the initial clustering without refining, followed by the evaluation of 

group motion refining with both HAC (second column, with light gray shadow) and HVC (third 

column, with dark gray shadow). 

Table 2 

The variance of quantitative performance related to group detection methods CT [1] , CF [7] and CCF 

are presented. For each method, we present at the first column the metric values on the initial clus- 

tering without refining, followed by the evaluation of group motion refining with both HAC (second 

column, with light gray shadow) and HVC (third column, with dark gray shadow). 
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m  
evaluation of our instant group motion refining method. In the se-

lected subset of video clips, we also consider groups from both in-

side and outside sceneries, different viewpoints of the same scene,

different numbers of members, different densities, various unifor-

mities, and different numbers of groups in the same scene. 

4.2. Evaluation on initial tracklet clustering for CCF 

To verify the independency of the proposed group motion re-

fining framework from initial tracklet clustering result, we adopt

results from CT, CF and CCF for evaluation. This enriches the vari-

ety of initial tracklet clusters. We carry out the comparison eval-

uation with the state-of-the-art methods on the same subset of

CUHK Crowd Dataset. During the experimental evaluation, param-

eter configurations for the competing methods are the same as in

publications referred to [1,7] , where λ= 0.6, d = 3, and K = 10. CCF is

verified in selected videos shown in Fig. 7 . The quantitative evalu-

ation are listed as three sections in Table 1 which are correspond-

ing to CT, CF and CCF respectively. The variance of the quantitative

evaluation are listed in Table 2 in the same way as Table 1 . We

first apply CT, CF and CCF to selected video clips. 1 Then we evalu-

ate the proposed group motion refining framework on the tracklet

clustering of all these three group detection methods. 

The quantitative results of initial tracklet clusterings of CT,

CF and CCF are shown as the first column in each section of

Tables 1 and 2 , which are the value of 7 measurements derived

from clustering evaluation averaged over video frames listed in

Fig. 7 . Table 1 indicates that CCF performs better than both CT and

CCF in terms of 7 measurements before and after the refinement.

According to Table 2 , the variances of the proposed method are

higher than the competing method on Purity, RI and MI, which

are highly related to the purity of a clustering method. After ap-

plying the refinement, the stability of the proposed method is im-

proved over the other methods in the light of the second and third
1 The video results can be downloaded in link https://pan.baidu.com/s/1hsugHF2 . 

p  

α  

u

Please cite this article as: N. Li et al., Instant coherent group motion fi
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olumns in each section of Table 2 . The ability of generalization of

he proposed method could be improved in the future. The ground

ruth is shown in Fig. 7 followed by the quality result of CT, CF

nd CCF. Differences among tracklet clustering results of different

roup detection methods are marked as white circles. As an inte-

ration of CF and collectiveness descriptor [6] , CCF measures the

imilarity more accurately when two members are at a distance.

pecific individuals in the white circle are detected correctly as

he member of the group marked as rose red. CCF performs bet-

er in terms of all 7 metrics than other two methods as shown

n Table 1 . There are unavoidable noises in ground truth of crowd

ideos in CUHK, as shown in Fig. 7 (e), where members grouped

y white circle at the bottom right are moving along the opposite

irection as an independent group in the crowd. The noise brings

o bias to the quantitative evaluation performance comparison of

he proposed CCF to the state-of-the-art method CF. However, as to

he evaluation of the proposed group motion refining framework,

he unavoidable noises in ground truth will affect the accuracy

nd hence the effectiveness of the instant coherent motion direc-

ion, which is the key to group motion refining framework. There-

ore, the noisy annotation is eliminated for group motion refining

ramework evaluation in the following sections without bringing

omparison biases. 

.3. Evaluation on representations for group motion refining 

The improvement of our group motion refining algorithm is val-

dated at group level across different initial tracklet clusterings in

ideos of various types of scenes. 

In Table 1 , the instant group refinement by HAC and HVC are

valuated regarding all the 7 metrics. The comparative improve-

ent ratio of group refining implemented upon two types of group

otion representations are listed in Table 3 . Through extensive ex-

eriments on different combinations of parameter α and φ, we set

and φ with 0.1 and 0.01, which produce the top two highest val-

es of all 7 metrics over these combinations. 
ltering by group motion representations, Neurocomputing (2017), 
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Table 3 

Relative improvement (percentage) of group motion refining with different instant group motion representations is 

evaluated, which is computed using Eq. (5) . NMI, Purity, AR, RI,MI, HI, Accuracy are quantitatively evaluated in the 

CUHK Crowd Dataset [1] at each column. The relative improvement of group motion refining with both HAC and HVC 

are evaluated compared with initial group detection results generated from CT [1] , CF [7] , CCF(proposed) and the com- 

bination of the three. 

Ratio(%) CT [1] CF [7] CCF(proposed) CT + CF + CCF 

HAC HVC HAC HVC HAC HVC HAC HVC 

NMI ↑ 1.13 1.03 0.54 0.49 0.22 0.20 0.63 0.57 

Purity ↑ 0.20 0.18 0.03 0.02 0.03 0.03 0.08 0.07 

AR ↑ 0.89 0.81 0.13 0.11 0.13 0.12 0.38 0.35 

RI ↑ 0.38 0.35 0.10 0.09 0.06 0.05 0.18 0.16 

HI ↓ 3.45 3.16 1.07 0.98 1.41 1.29 1.97 1.81 

MI ↑ 0.87 0.80 0.05 0.04 0.12 0.11 0.35 0.32 

Accuracy ↑ 1.45 1.33 2.06 1.88 1.44 1.32 1.65 1.51 

Fig. 8. Qualitative evaluations of instant group motion refining framework on 8 crowd videos in the CUHK crowd dataset, noted as (a)–(h). Evaluation on both HAC and 

HVC are performed over three methods, including CT, CF and CCF, through group motion refining. Both true and false annotations are illustrated with white circle and 

white dotted line circle. Note that, the proposed group motion refining framework fails in Fig. 8 (b), where initial tracklet clustering at the top row displays relatively less 

consistency in group member moving orientation. 
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The effectiveness of the proposed group motion representations

HAC and HVC to refine groups in crowd videos is demonstrated.

Groups detected by different methods are aligned to the ground

truth with high match account. The refinement ratio is computed

by 

Ratio = 

P i ( G C 
M 

∗
) − P i ( G 

M 

∗
) 

P i ( G 

M 

∗ ) 
, (5)

where P i ( G 

M 

∗
) is the evaluation on the Metric i for tracklet clus-

tering results G 

M 

∗
of method M 

∗, which includes CT, CF and CCF.

Table 3 shows the evaluation of group refinement to individual

tracklet clustering results of three group detection methods. We

also test the refining performance of group motion representa-

tions by combing CT, CF and CCF and show the results in Table 3 .

P i ( G C 
M 

∗
) is the evaluation of metric i for group motion refining of

method M 

∗ with group motion consistency representation C , such

as velocity consistency and angle consistency. 

CCF performs relatively better in terms of all 7 metrics than

both CT and CF, no matter with or without the group refinement.

With group member motion direction and amplitude complement-

ing each other, HVC outperforms HAC in group motion refining.

The performance of refining CCF detection results with HVC is

higher than others. The average accuracy improvement ratio of

CCF by using HVC is 1.51%. There are groups where HAC can

obtain relatively greater improvement. Thus HVC has overwhelm

compatibility for coherent motion filtering than HAC when there

are relative noisy in initial tracklet clusters. 

Relative qualitative improvements of using HAC and HVC for

group motion refining are marked as white circles in Fig. 8 (a)–(h).

Group detection results of CT, CF and CCF are used as the initial

tracklet clusters adopted in Section 3.3 . The proposed group mo-

tion refining framework can refine most of tracklet clusters as well

as maintaining the motion consistency for groups otherwise. As

shown in Fig. 8 (c),(f),(h), the proposed refining framework displays

no negative affection on the initial group clustering results. We

also observe cases where the proposed refining framework fails.

In Fig. 8 (b), group members clustered to wrong groups are marked

with white dotted line circles, where initial groups at the top row

display relative less consistency on group member moving orien-

tations. It proves that group motion representations HAC and HVC

in this paper are much more suitable for refining initial tracklet

clusters with better consistency in moving orientation. 

5. Conclusions 

In this paper, we have studied representations of instant group

motion for characterizing intra-group motion. We observe that the

group motion consistency at each direction can capture the inter-

group motion consistency differences. Two group motion repre-

sentations based on group motion consistency are proposed as

HAC and HVC. By the proposed group motion representations, the

group motion consistency orientation is distinguished for the in-

stant group motion consistency filtering strategy. An instant group

motion refining framework is built upon the group motion con-

sistency filtering strategy. Evaluation is conducted based on group

detection results generated by both existing methods (CT,CF) and a

newly proposed group detection method (CCF) by us, which proves

the universality of our framework. Experimental results show that

CCF is better than CT and CF, and refining results show the superi-

ority of two group motion representations for group motion refin-

ing. 

In the future work, we will explore the application of the

group motion consistency on group level crowd event detection

and modeling. 
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